
Capnography

McHenry Western Lake County EMS

What is Capnography?

- Capnography is an objective measurement of exhaled CO2 levels.
- Capnography measures ventilation.
- It can be used to:
 - Assist in confirmation of intubation.
 - Continually monitor the ET tube placement during transport.
 - Assess ventilation status.
 - Assist in assessment of perfusion.
 - Assess the effectiveness of CPR.
 - Predict critical patient outcomes.

CAPNOGRAPHY

- Term capnography comes from the Greek work *KAPNOS*, meaning smoke.
- Anesthesia context: inspired and expired gases sampled at the Y connector, mask or nasal cannula.
- Gives insight into alterations in ventilation, cardiac output, distribution of pulmonary blood flow and metabolic activity.

ETCO,

Capnography

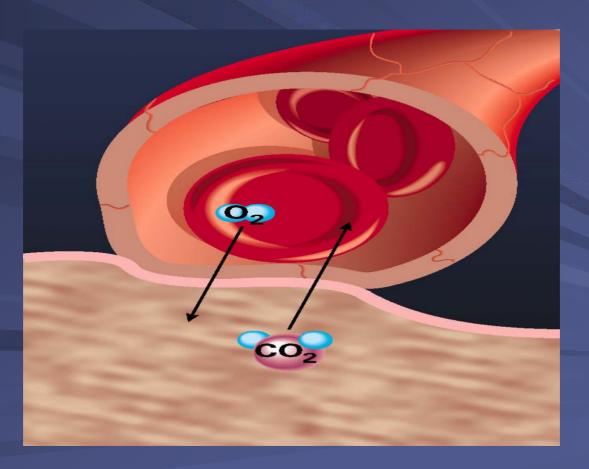

- Measurement and display of both ETCO₂ value and capnogram (CO₂ waveform)
- Measured by a capnograph

Capnometry

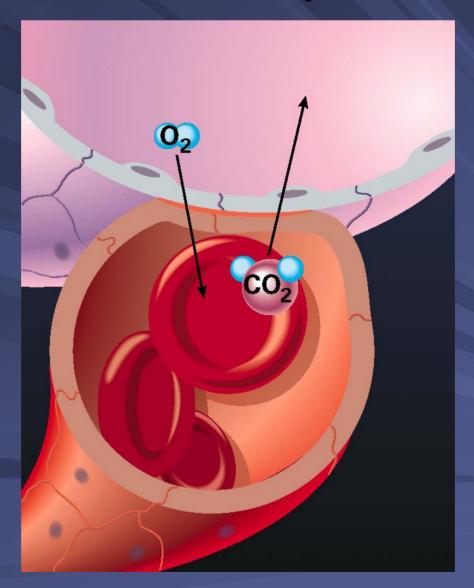
- Measurement and display of ETCO₂ value (no waveform)
- Measured by a capnometer

Pulmonary Physiology

- Oxygenation vs Ventilation
- Metabolic Respiration
 - The EMS version!

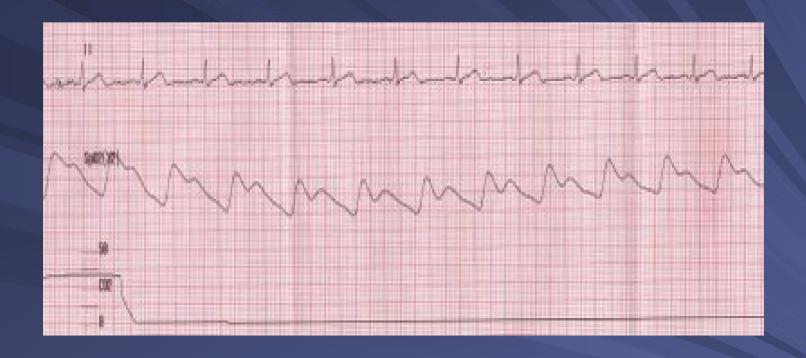


Oxygenation – How we get oxygen to the tissues


Ventilation (the movement of air) – How we get rid of carbon dioxide.

Cellular Respiration

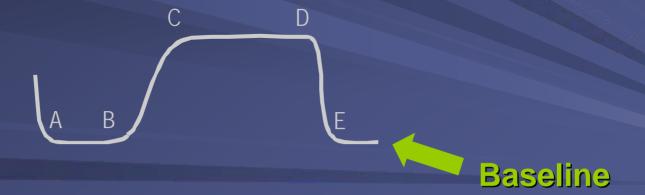
■ Glucose (sugar) + Oxygen → Carbon dioxide + Water + Energy (as ATP)


Alveolar Respiration

Capnography vs Pulse Oximetry

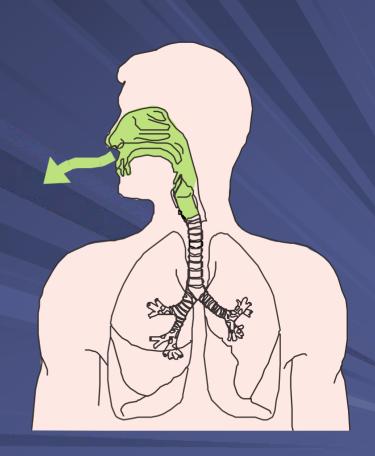
- Capnography provides an immediate picture of patient condition. Pulse oximetry is delayed. Hold your breath.
- Capnography will show immediate apnea, while pulse oximetry will show a high saturation for several minutes.

Capnography vs Pulse Oximetry


Good pulse....good Spo2....No Capnography!

Introduction to Capnography Summary

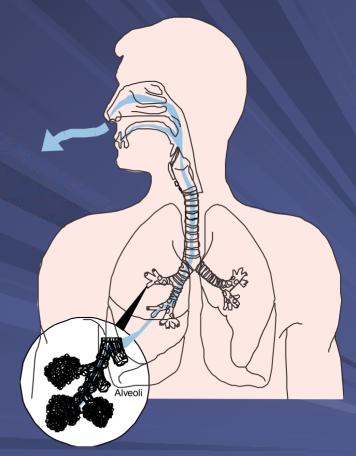
- Oxygenation and ventilation
- Pulse oximetry
 - Measures O₂ saturation in blood
 - Slow to indicate change in ventilation
- Capnography
 - Measures CO₂ in the the airway
 - Provides a breath-to-breath status of ventilation

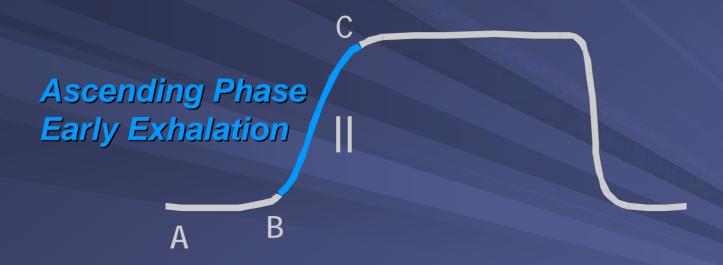

Capnographic Waveform

- Capnograph detects only CO₂ from ventilation
- No CO₂ present during inspiration
 - Baseline is normally zero

Capnogram Phase I Dead Space Ventilation

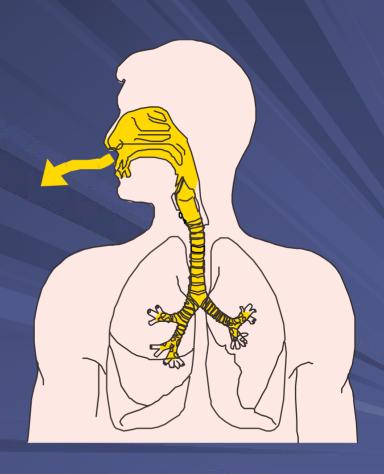
- Beginning of exhalation
- No CO₂ present
- Air from trachea, posterior pharynx, mouth and nose
 - No gas exchange occurs there
 - Called "dead space"

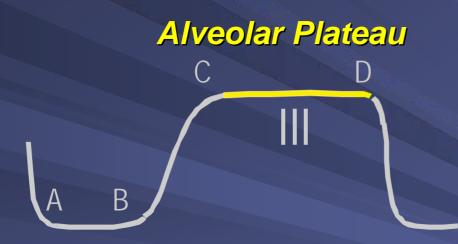

Capnogram Phase I Baseline


Beginning of exhalation

Capnogram Phase II Ascending Phase

- CO₂ from the alveoli begins to reach the upper airway and mix with the dead space air
 - Causes a rapid rise in the amount of CO₂
- CO₂ now present and detected in exhaled air

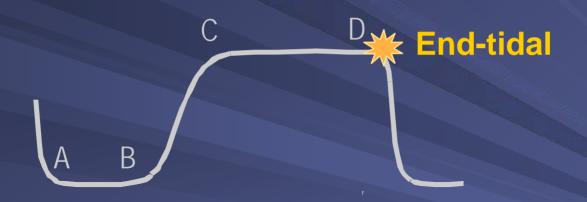

Capnogram Phase II Ascending Phase


CO₂ present and increasing in exhaled air

Capnogram Phase III Alveolar Plateau

- CO₂ rich alveolar gas now constitutes the majority of the exhaled air
- Uniform concentration of CO₂ from alveoli to nose/mouth

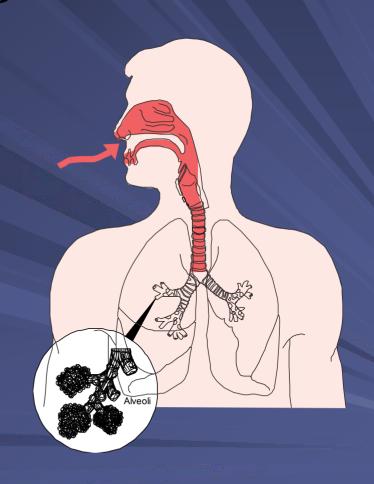
Capnogram Phase III Alveolar Plateau



CO₂ exhalation wave plateaus

Capnogram Phase III End-Tidal

- End of exhalation contains the highest concentration of CO₂
 - The "end-tidal CO2"
 - The number seen on your monitor
- Normal EtCO₂ is 35-45mmHg
 - Normal is relative NOT absolute


Capnogram Phase III End-Tidal

End of the the wave of exhalation

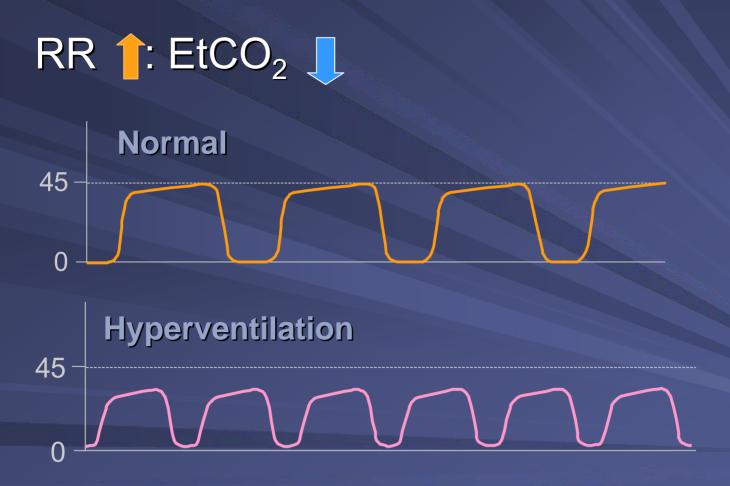
Capnogram Phase IV Descending Phase

- Inhalation begins
- Oxygen fills airway
- CO₂ level quickly drops to zero

Capnogram Phase IV Descending Phase

Inspiratory downstroke returns to baseline

Capnography Waveform

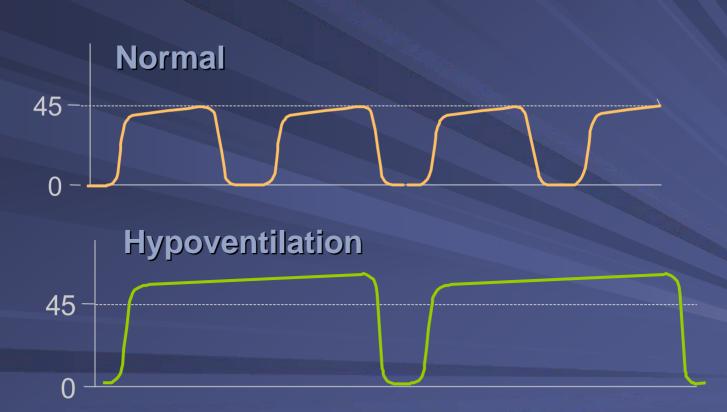

Normal range is 35-45mm Hg (5% vol)

Note: This is Relative NOT absolute

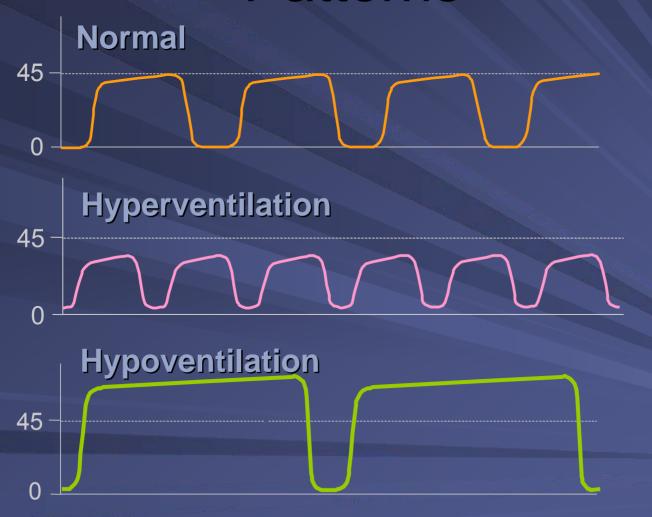
Capnography Waveform Question

- How would your capnogram change if you intentionally started to breathe at a rate of 30?
 - Frequency
 - Duration
 - Height
 - Shape

Hyperventilation

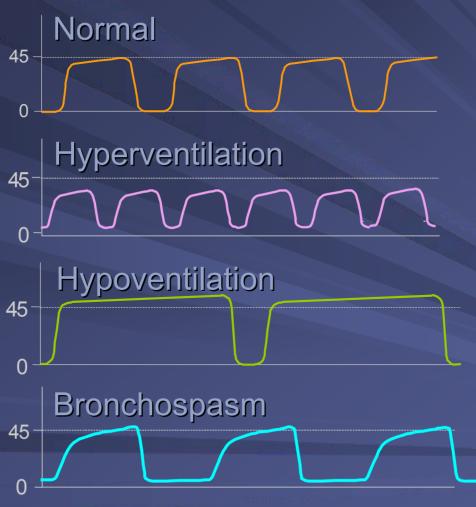


Capnography Waveform Question


- How would your capnogram change if you intentionally decreased your respiratory rate to 8?
 - Frequency
 - Duration
 - Height
 - Shape

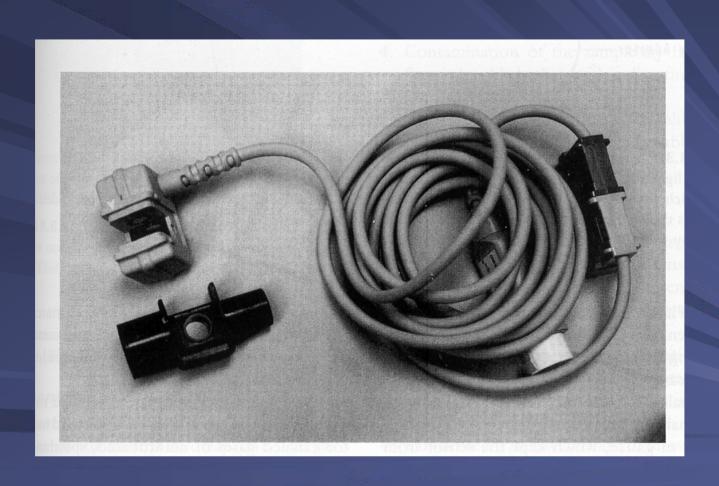
Hypoventilation

RR : EtCO₂


Capnography Waveform Patterns

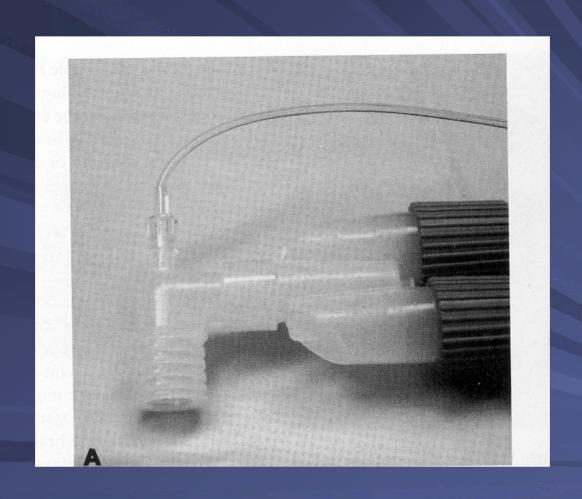
Introduction to Capnography Summary

- Capnographic waveform has four phases
- The highest CO₂ concentration is at the end of alveolar plateau
 - End-tidal CO₂
 - Normal EtCO₂ range is 35-45mmHg
- Several conditions can be immediately detected with capnography


Capnography Waveform Patterns

2 Techniques for Monitoring ETCO2

- 2 methods for obtaining gas sample of analysis
 - Mainstream
 - Sidestream
- Mainstream (Flow-through or In-line)
 - Adapter placed in the breathing circuit
 - ■No gas is removed from the airway
 - □ Adds bulk to the breathing system
 - Electronics are vulnerable to mechanical damage

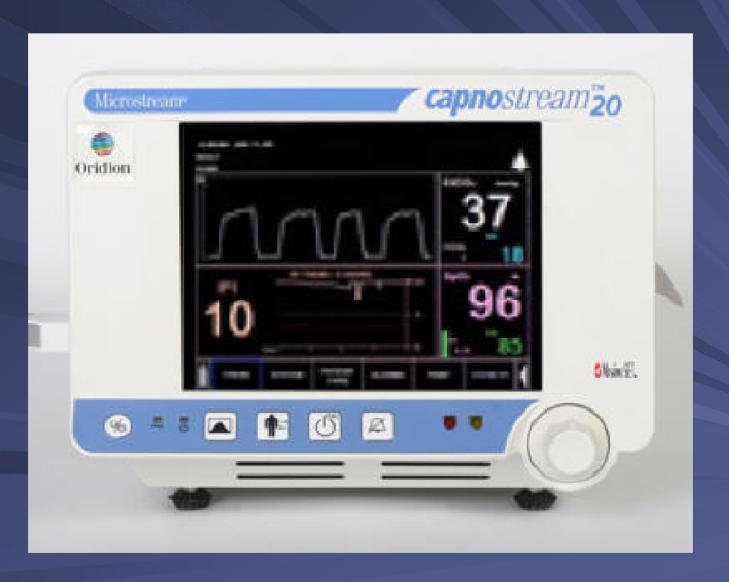

Mainstream Analyzer

Sidestream Analyzer

- Sidestream (aspiration)
 - Aspirate gas from an airway sampling site and transport the gas sample through a tube to a remote CO2 analyzer
 - Provides ability to analyze multiple gases
 - Can use in non-intubated patients
 - Potential for disconnect or leak giving false readings
 - Withdrawals 50 to 500ml/min of gas from breathing circuit (most common is 150-200ml/min)
 - □ Water vapor from circuit condenses on its way to monitor
 - A water trap is usually interposed between the sample line and analyzer to protect optical equipment

Sidestream Analyzer

Medtronics Analyzers


Zoll Capnostat Sensor

Colorimetric Etco2 Sensor

Colorimetric Etco2 Sensor

Remember!!

"Good as Gold"

"Yellow is Sunshine"

"Yellow is YES!"

"Purple is Poop"

Location of Sensor

■The location of CO₂ sensor greatly affects the measurement

Measurement made further from the alveolus can become mixed with fresh gas causing a dilution of CO₂ values and rounding of capnogram

How ETCO2 Works

- □ETCO₂ monitoring determines the CO₂ concentration of exhaled gas
- Photo detector measures the amount of infrared light absorbed by airway gas during inspiration and expiration
 - CO2 molecules absorb specific wavelengths of infrared light energy
 - □ Light absorption increases directly with CO₂ concentration
- A monitor converts this data to a CO₂ value and a corresponding waveform (capnogram)

Capnography

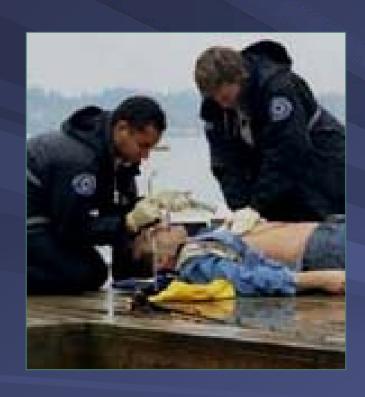
- Expressed in numerical value in mm Hg.
- ■Normal value between of 35 45 mm Hg.
 - ☐For all age groups.

Capnography

- □If the number is > 45, the CO2 is high.
 - Hypoventilation
 - Respiratory Acidosis
- □ If the number is < 35, the CO2 is low.
 - Hyperventilation
 - Respiratory Alkalosis.

Interpreting Capnography

- Capnography (Numerical)
- Capnogram (Visual)
- ROSC


"A 2005 study comparing field intubations that used continuous capnography to confirm intubations vs. non-use showed zero unrecognized misplaced intubations in the monitoring group vs. 23% misplaced tubes in the unmonitored group."

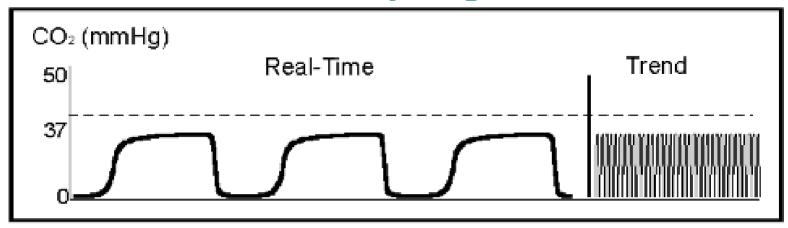
☐ Annals of Emergency Medicine, May 2005

Confirm ET Tube Placement

- Capnography provides
 - Objective confirmation of correct tube placement
 - Documentation of correct placement

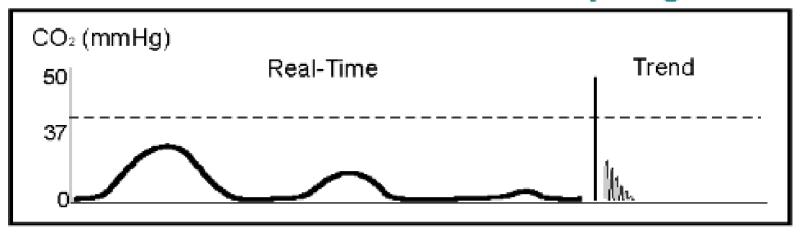
Confirm ET Tube Placement

Confirm ET Tube Placement


- ET tube placement in esophagus may briefly detect CO₂
 - Following carbonated beverage ingestion
 - When gastric distention was produced by mouth to mouth ventilation
- Residual CO₂ will be washed out after 6 positive pressure breaths

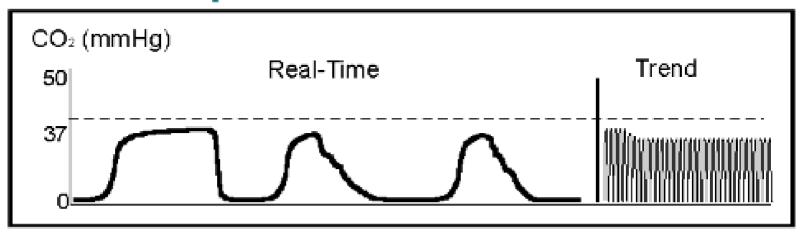
Detect ET Tube Displacement

- Traditional methods of monitoring tube position
 - Periodic auscultation of breath sounds
 - Gastric distention
 - Worsening of patient's color
 - Late sign of tube displacement


These methods are subjective and unreliable—and delayed

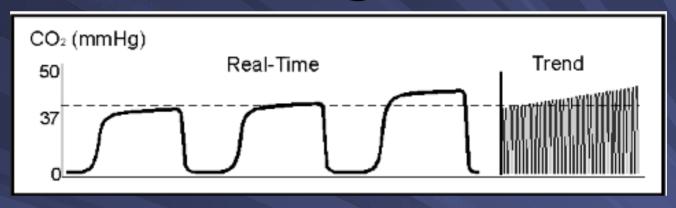
The Capnogram

- Provides validation of ETCO₂ value
- Visual assessment of patient airway integrity
- Verification of proper ET tube placement
- Assessment of ventilator / breathing circuit integrity

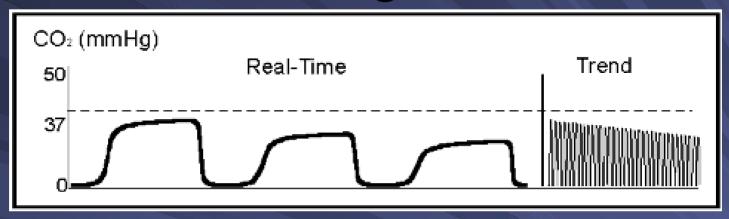

Endotracheal Tube in Esophagus

Possible Causes:

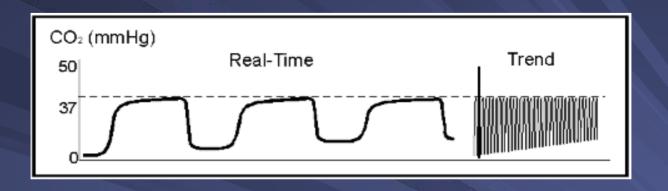
- Missed intubation
- A normal capnogram is the best evidence that the ET tube is correctly positioned
- With ET tube in the esophagus, little or no CO₂ is present


Inadequate Seal Around ET Tube

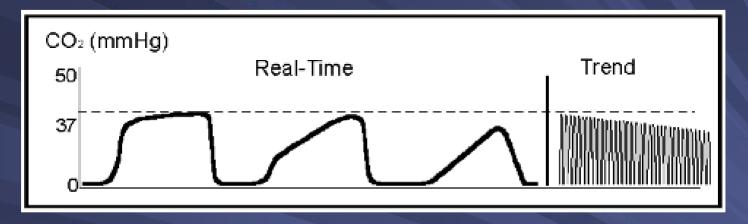
Possible Causes:


- Leaky or deflated endotracheal or tracheostomy cuff
- Artificial airway is too small for the patient
- Connections on sample tubing loose

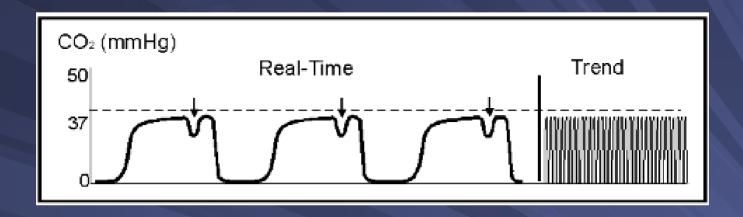
Increasing ETCO2


- Hypoventilation (decrease RR or TV)
- Increase in metabolic rate
- Increase in body temperature
- Sudden increase in blood pressure

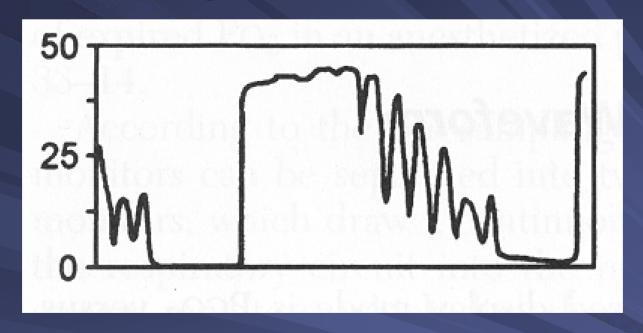
Decreasing ETCO2


- Gradual
 - Hyperventilation (increase RR or TV)
 - Decrease in metabolic rate
 - Decrease in body temperature
- Rapid
 - Embolism (air or thrombus)
 - Sudden hypotension
 - Circulatory arrest

Increase in Inspired CO2 (Rise in Baseline)

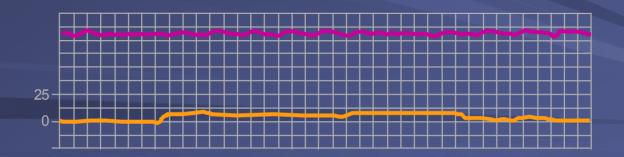

- CO2 absorbent exhausted
- Faulty expiratory valve
- Calibration error in monitor
- Water in analyzer

Loss of Plateau / Sloping of ETCO2 Waveform


- Obstruction of expiration (asthma, COPD, bronchospasm)
- No plateau is reached prior to next inspiration
- Kinked endotracheal tube

Cleft in Phase III of Waveform

- Patient is inspiring during exhalation phase of mechanical ventilation
- PaCO2 increasing cause spontaneous respiration
- Increasing pain


Cardiogenic Oscillations

Caused by beating of heart against lungs

Decision to Cease Resuscitation

 Capnography provides another objective data point in making a difficult decision

The Non-intubated Patient CC: "trouble breathing"

Asthma?

Emphysema?

PE?

Bronchitis?

Pneumonia?

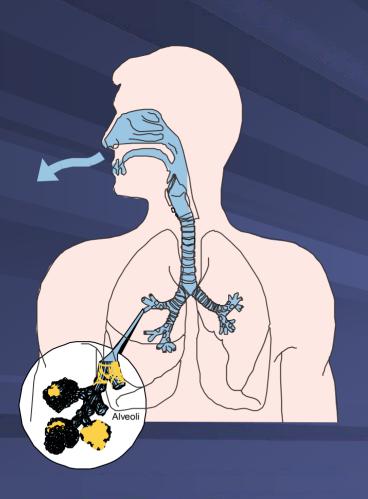
Cardiac ischemia?

CHF?

The Non-intubated Patient CC: "trouble breathing"

- Identifying the problem and underlying pathogenesis
- Assessing the patient's status
- Anticipating sudden changes

- Identify and monitor bronchospasm
 - Asthma
 - COPD
- Assess and monitor
 - Hypoventilation states
 - Hyperventilation
 - Low-perfusion states


- Capnography reflects changes in
 - Ventilation movement of gases in and out of the lungs
 - Diffusion exchange of gases between the air-filled alveoli and the pulmonary circulation
 - Perfusion circulation of blood through the arterial and venous systems

- Ventilation
 - Airway obstruction
 - Smooth muscle contraction
 - Bronchospasm
 - Airway narrowing
 - Uneven emptying of alveoli
 - Mucous plugs

Diffusion

- Airway inflammation
- Retained secretions
- Fibrosis
- Decreased compliance of alveoli walls
- Chronic airway modeling (COPD)
- Reversible airway disease (Asthma)

Capnography in Bronchospastic Conditions

- Air trapped due to irregularities in airways
- Uneven emptying of alveolar gas
 - Dilutes exhaled CO₂
 - Slower rise in CO₂
 concentration during exhalation

Capnography in Bronchospastic Diseases

- Uneven emptying of alveolar gas alters emptying on exhalation
- Produces changes in ascending phase (II) with loss of the sharp upslope
- Alters alveolar plateau (III) producing a "shark fin"

Capnography in Bronchospastic Conditions Capnogram of Asthma

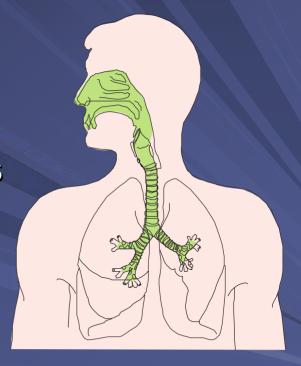
Changes in CO₂ seen with increasing bronchospasm

Source: Krauss B., *et al.* 2003. FEV1 in Restrictive Lung Disease Does Not Predict the Shape of the Capnogram. Oral presentation. Annual Meeting, American Thoracic Society, May, Seattle, WA

Capnography in Bronchospastic Conditions Asthma Case Scenario

- 16 year old female
- C/O "having difficulty breathing"
- Visible distress
- History of asthma, physical exertion, "a cold"
- Patient has used her "puffer" 8 times over the last two hours
- Pulse 126, BP 148/86, RR 34
- Wheezing noted on expiration

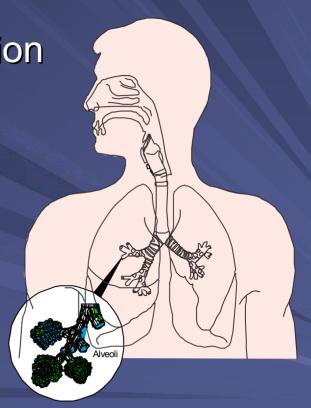
Capnography in Bronchospastic Conditions Asthma Case Scenario


Initial

After therapy

Capnography in Bronchospastic Conditions Pathology of COPD

- Progressive
- Partially reversible
- Airways obstructed
 - Hyperplasia of mucous glands and smooth muscle
 - Excess mucous production
 - Some hyper-responsiveness

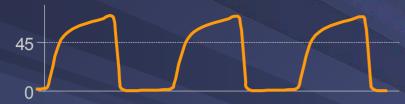


Hyperplasia: An abnormal increase in the number of cells in an organ or a tissue with consequent enlargement.

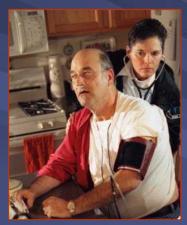
Capnography in Bronchospastic Conditions Pathology of COPD

Small airways

- Main sites of airway obstruction
- Inflammation
- Fibrosis and narrowing
- Chronic damage to alveoli
- Hyper-expansion due to air trapping
- Impaired gas exchange


Capnography in Bronchospastic Conditions Capnography in COPD

- Arterial CO₂ in COPD
 - PaCO₂ increases as disease progresses
 - Requires frequent arterial punctures for ABGs
- Correlating capnograph to patient status
 - Ascending phase and plateau are altered by uneven emptying of gases
 - PaC02 is the (P)artial pressure of (a)rterial (C02) in the human body. In other words, it is a calculation of the amount of carbon dioxide present in the artery of a person. The normal level is 35-45 mmHg. An amount greater than 45 is dangerous, even life-threatening.

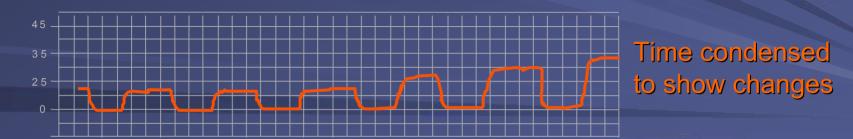

Capnography in Bronchospastic Conditions COPD Case Scenario

- ■72 year old male
- C/O difficulty breathing
- History of CAD, CHF, smoking and COPD
- Productive cough, recent respiratory infection
- Pulse 90, BP 158/82 RR 27

Capnography in Bronchospastic Conditions COPD Case Scenario

Initial Capnogram A

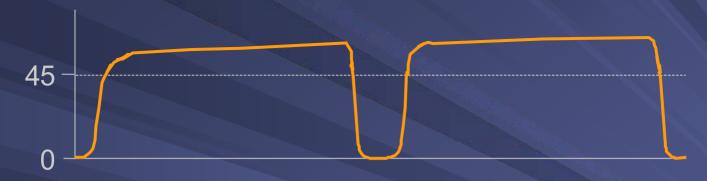
Initial Capnogram B


Capnography in CHF Case Scenario

- 88 year old male
- C/O: Short of breath
- H/O: MI X 2, on oxygen at 2 L/m
- Pulse 66, BP 114/76/p, RR 36 labored and shallow, skin cool and diaphoretic, 2+ pedal edema
- Initial SpO₂ 69%; EtCO₂ 17mmHG

Capnography in CHF Case Scenario

- Placed on non-rebreather mask with 100% oxygen at 15 L/m; IV Fentanyl and SL Nitroglycerin as per local protocol
- Ten minutes after treatment:

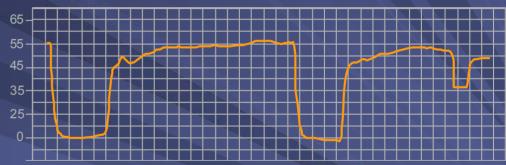

```
SpO<sub>2</sub> 69% 99% 
EtCO<sub>2</sub> 17mmHG 35 mmHG
```


Capnography in Hypoventilation States

- Altered mental status
 - Sedation
 - Alcohol intoxication
 - Drug Ingestion
 - Stroke
 - CNS infections
 - Head injury
- Abnormal breathing
- CO₂ retention
 - EtCO₂ >50mmHg

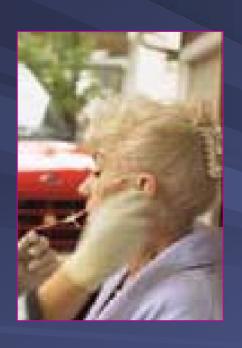
Capnography in Hypoventilation States

Time condensed; actual rate is slower


- EtCO₂ is above 50mmHG
- Box-like waveform shape is unchanged

Capnography in Hypoventilation States Case Scenario

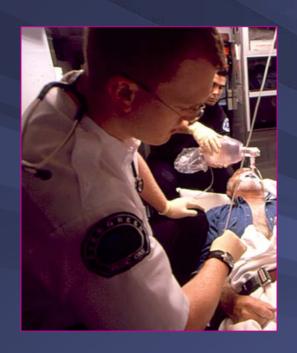
- Observer called 911
- 76 year old male sleeping and unresponsive on sidewalk, "gash on his head"
- Known history of hypertension, EtOH intoxication
- Pulse 100, BP 188/82, RR 10, SpO₂ 96% on room air

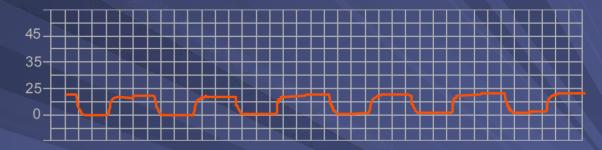

Capnography in Hypoventilation States Hypoventilation

Time condensed; actual rate is slower

Capnography in Hypoventilation States Hypoventilation

Hypoventilation in shallow breathing


Capnography in Low Perfusion

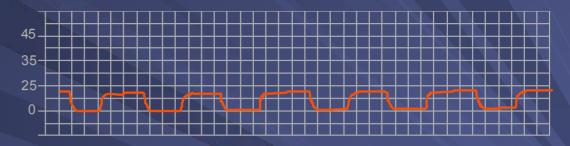

- Capnography reflects changes in
- Perfusion
 - Pulmonary blood flow
 - Systemic perfusion
 - Cardiac output

Capnography in Low Perfusion Case Scenario

- 57 year old male
- Motor vehicle crash with injury to chest
- History of atrial fib, anticoagulant
- Unresponsive
- Pulse 100 irregular, BP 88/p
- Intubated on scene

Capnography in Low Perfusion Case Scenario


Low EtCO₂ seen in low cardiac output


Ventilation controlled

Capnography in Pulmonary Embolus Case Scenario

- 72 year old female
- CC: Sharp chest pain, short of breath
- History: Legs swollen and pain in right calf following flight from Alaska
- Pulse 108 and regular, RR 22, BP 158/88 SpO₂ 95%

Capnography in Pulmonary Embolus Case Scenario

Strong radial pulse

Low EtCO₂ seen in decreased alveolar perfusion

Capnography in Seizing Patients

Only accurate and reliable modality for assessment of ventilatory status

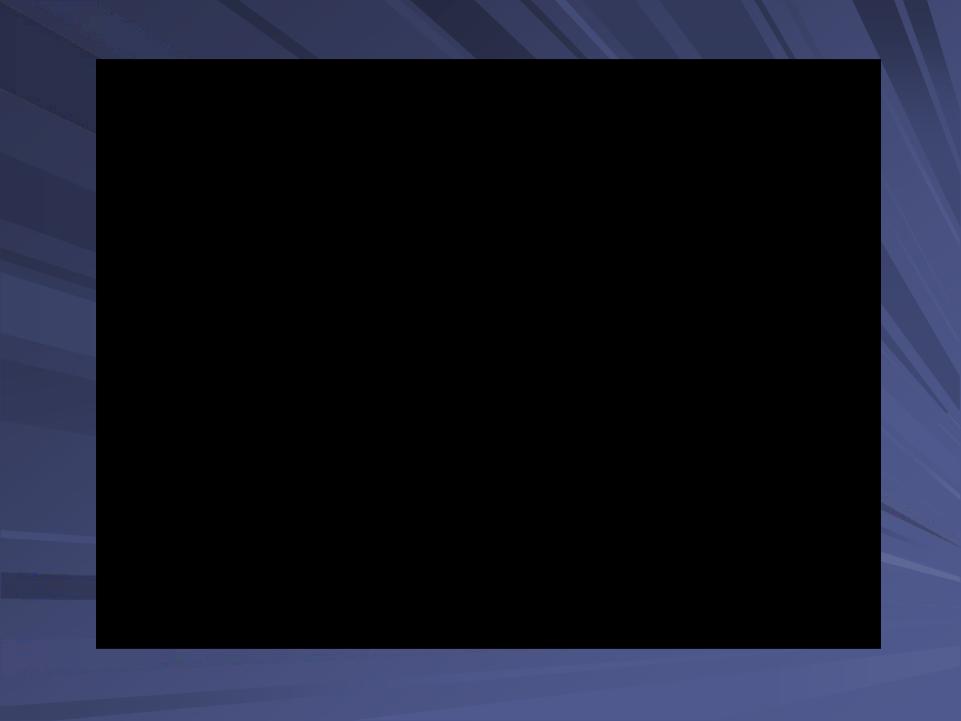
Helps to distinguish between

- Central apnea
- Ineffective ventilations
- Effective ventilations

Capnography in DKA

The more acidotic the patient, the lower the HCO3 and the higher the respiratory rate and lower the EtCO2

Helps is distinguishing DKA vs HHNK


Capnography use with a Head Injured Patient

Helps to avoid hyperventilation

■ Target value of 35mmHG is recommended

The Non-intubated Patient Summary

- Identify and monitor bronchospasm
 - Asthma
 - COPD
- Assess and monitor
 - Hypoventilation states
 - Hyperventilation
 - Low perfusion
 - Many others now being reported

Capnography Fact or Myth?

Capnography will detect a tracheal intubation, every time.

MYTH!

Carbonated Beverages!

- Don't forget your time tested assessments.
- Will not detect a right main stem intubation.

Capnography Fact or Myth?

I saw the tube go through the cords, and my capnometer reads zero. I must have missed.

MYTH!

- ■NEVER forget your time tested assessments!
- ■What if the body is not making CO2?
 - Cellular Death
 - Extreme Hypothermia
 - ■Extended down time without CPR

Capnography Fact or Myth?

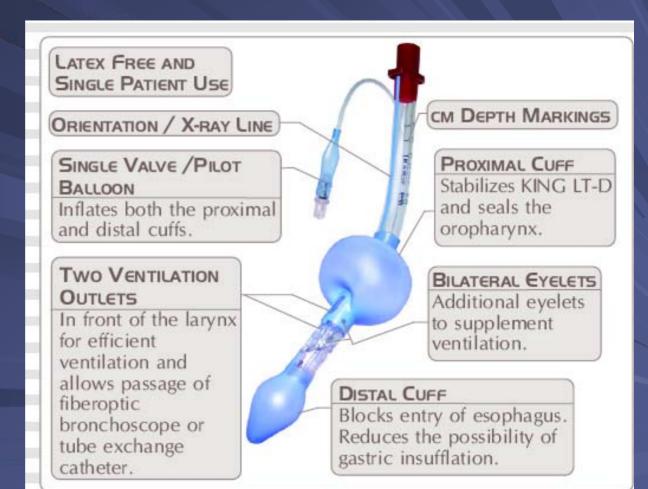
Capnography is just another confusing thing I don't need to know about and doesn't need to be on the ambulance!

MYTH!

- □Airway Management poses the 2nd highest risk of liability for EMS.
 - ■What is the riskiest?
- □Its easy to use!
 - Just look for the little boxes!
- Much better indicator than pulse oximetry.
 - ■Pulse oximetry is oxygenation....ETC02 is ventilation!

The normal value of ETCO2 and for what ages?

35 – 45 mm HG for all ages


The clear plastic piece is disposable or reusable?

DISPOSABLE!

Can capnography be used on the King Tube?

YES!

■ How long can Capnography be used?

Capnography is used as long as EMS feels it provides benefit for the patient.

Review

Does Capnography hurt?

Review

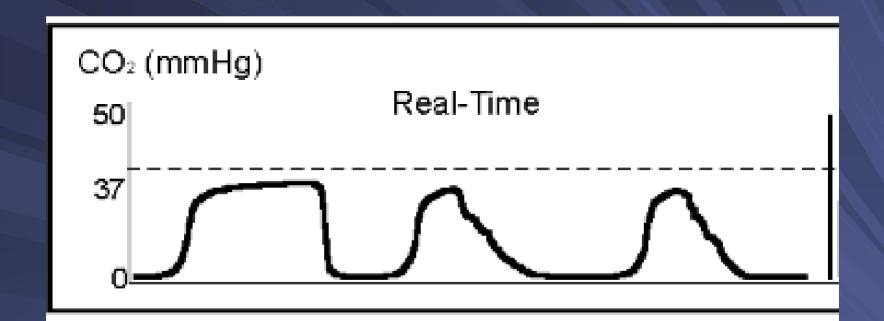
■ The device is harmless and causes no pain or discomfort to the patient.

- You have one of your fellow crew members ventilating a cardiac arrest victim.
- Capnography has been applied after the tube (ET or King) has been inserted and a EtCo2 of 19 has been found.
- What should you do next?

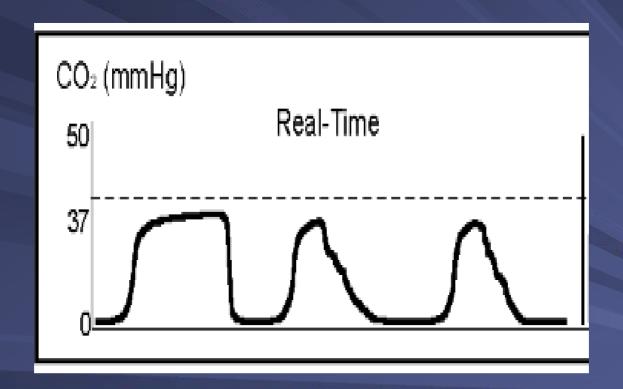
- Your crew would want to slow the respiratory rate to bring the EtCo2 up to a normal level of 35 – 45.
- Continue to monitor the patients Spo2 and EtCo2 readings during transport.

Question?

- You have one of your crew ventilating a Traumatic Head Injury patient and the initial EtCo2 reading that you obtain is 49. This reading indicates that you will need to:
 - A) Slow the respiratory rate
 - B) Increase the respiratory rate
 - C) Does not matter what this is. We need 100% on the Sp02
 - D) Increase the flow of 02 into the BVM


- You have one of your crew ventilating a Traumatic Head Injury patient and the initial EtCo2 reading that you obtain is 49. This reading indicates that you will need to:
 - A) Slow the respiratory rate
 - B) Increase the respiratory rate
 - C) Does not matter what this is. We need 100% on the Sp02
 - D) Increase the flow of 02 into the BVM

■ You are treating a full arrest and have hooked up your capnography to your advanced airway. You have a reading of 0 and no wave form. Is this reason to remove your airway?


What should you do....

- Listen to lung sounds
- Look for symmetrical chest rise
- Vapor in the tube
- Change in patient color
- Absent abdominal sounds
- Re-visualize placement of tube
- EIDD

• 6 year old has overdosed on parents pain medications. Agonal respirations of 7 were noted on your arrival. You have inserted an appropriate sized King Tube and you see the following wave form.

Leaking or inadequate inflation of airway cuff

Is this color good or bad?

Purple is Poop!

Sources

- Paramedic Care: Principles and Practice. Bledsoe, Bryan E. Brady Publishers. 2003.
- Emergency Care. 10th Edition. Limmer, Daniel. Brady Publishers. 2005.
- Capnography for Paramedics. http://emscapnography.blogspot.com
- Capnography in EMS. Kraus, Baruch EdM. JEMS. January 2003.
- Medtronic ERS

Special Thanks

Staci Rivas, CRNA, MSN KU Nurse Anesthesia Department Jeff Lesniak, EMT-P Woodstock Fire Rescue District &

Medtronics Corporation for the use of their materials in this presentation

Now let's play!!

Everyone needs to see how their specific departments EtCo2 monitor works